创视智能
登录/注册

【行业应用】几种测厚仪器的研究与应用

发表时间:2021-10-13 11:20

摘要:论述了几种通过传感器在线测厚仪器的原理、优缺点以及发展研究现状,并讨论了在现代工业生产和生活中的应用。指出,提高测厚仪器的精确度以及各种测厚仪器的配合使用应成为厚度测量的发展趋势。


关键词:传感器;在线测量;测厚仪


0   引言

随着工业的发展,产品的厚度已经成为评价其质量好坏的一项重要指标,工业中对测厚的要求也越来越高,诸如要求实时、在线、报警等,原始的人工测厚方法比如机械式测厚已经逐渐不能满足生产要求,这就促使研究人员研究相关的测厚的理论,利用先进的传感器检测技术,开发出更有效、准确、实用性的在线测厚仪器。在此背景下,在线测厚技术就大力发展了起来,在线测量能够对产品厚度进行实时、在线的检测。常用的测厚方法有激光测厚、射线测厚、红外测厚、涡流测厚、超声波测厚等。测厚仪在工业生产上已经广泛应用,有的已经在大规模生产线投入应用,并且得到了较好的结果,还有一部分测厚仪正在进行更进一步的改进,以便发挥它们更强大功能。


1     基本原理及应用范围

根据测厚仪工作的方式不同,一般将测厚方式分为非接触式测厚和接触式测厚。根据测厚原理的不同,测厚仪一般有以下几种。


1.1   激光测厚

激光测厚法是典型的非接触式测厚,其原理是采用光电成像技术。引入激光作为测量工具,在很大程度上提高了测量系统的灵敏度和精度,充分利用激光的方向性好、亮度高等优势构建光学检测系统,来达到测量厚度的目的。激光测厚的原理如下,采用差动式测量的方法,利用两台激光位移传感器,上、下采用准直对射的激光光束照射待测板材,通过CCD(电荷藕合元件)成像,CCD能将光学影像转换成为电信号,电信号经过相应的模块处理后送入CPU,计算之后得到测量物体的上表面与激光传感器距离和物体下表面距传感器距离,最后通过两个测量值和两个传感器之间的距离值就可以算出物体的厚度。应该注意的是两个激光发射器发出的光束要在同一条直线上,而且激光发射器要采用同步触发方式,这样就避免了因为被测物上下抖动而影响测量精度的情况,从而减小误差,差动式测量法在激光侧厚中有很高的应用价值。


激光测厚法适用于对钢板、带材等一些非透明的材料进行在线、高速的测厚。尤其适用于环境极为恶劣的热轧钢生产线的在线测量和轧制厚度的控制,近年来激光测厚也用来测量转炉炉衬的厚度,它有效地改善了工作环境,有测量准确、实用性好、安全可靠、无辐射等优点,提高了产品质量和生产效率。我国激光测厚仪研究方面起步较晚,但同样发展迅速,北京贝诺机电设备有限公司研发的LPM系列激光测厚仪针对国内热轧现场恶劣环境条件,通过采用自主激光检测技术及可靠的防护措施研制而成的,完全满足热轧板坯厚度检测的需求,其测量精度达到了0.08%,达到世界先进水平。


1.2   射线测厚

射线测厚也是一种非接触型测厚,其原理是利用射线的强穿透性和穿透被测物体后强度的衰减来测量物体厚度,目前用于工业生产的主要是X射线测厚仪和γ射线测厚仪。X射线测厚原理如图1所示,当一束X射线通过被测物体时会产生衰减,衰减的强弱与被测物体的厚度和材质有关,射线源发射出一束强度为I0的射线,通过被测物体的吸收,到达另外一侧传感器的强度为I。它们两者之间有如下关系:

1 X射线测厚原理


其中:I0为放射源发出射线的强度,它与加在射线管两端电压的大小成正比;I为传感器接收射线的强度;μ为被测材料的吸收系数,它与自身的材质有关,在已知材料的情况下其为一个确定的值;d为被测材料的厚度。对上式求对数变形得:

要求物体的厚度,只需要知道I0I即可。γ射线测厚原理基本上与X射线测厚原理基本相同,不同的是X射线是人工采用射线管发射,γ射线则是天然放射物质发射,比X射线更稳定不易受外界干扰,穿射能力更强,但它也有明显的缺陷,就是放射源的强度不易控制,且放射源的运输比较困难。总的来说,射线测厚的方法精度较高(精度可达0.3mm),但是测量厚度的范围有限(测量范围<40mm);仪器的成本相对较贵且使用寿命不长。


射线测厚主要应用在金属板材、纸张、薄膜等厚度的在线测量和控制,有的还可以用来检测输油管道内部结垢的厚度。由于辐射的存在,容易对环境造成污染,对人的身体健康产生威胁,所以对操作人员的防护措施要求较高,这在无形中又加大了成本,射线测厚法一般不作为工厂企业测厚的首选;另一方面,由于物体的吸收系数与物体的密度有密切关系,因此射线测厚不适用于待测材料密度变化的测厚场合。德国IMS公司生产的射线测厚仪具有精度高、自带数据库与温度补偿系统等优点,广泛的应用在了钢铁工业中。


1.3   红外测厚

红外测厚主要应用在薄膜生产中,也是一种非接触式测厚,对于特定材料的薄膜,其对红外光的吸收能力,因波段的不同而不同,某些波段的红外光极易被吸收,而某些波段的红外光不易被吸收,所以红外光谱线上会出现波峰和波谷,对多种薄膜进行光谱分析,选出其最有共性,最不易受干扰的波段的红外光作为光源。红外测厚方法一般分为两种,利用光反射原理的红外反射法和利用光衰减吸收原理的红外透射法,反射式测厚应用已经很广泛,其测量原理是:在特定波长的红外光照射下,薄膜的厚度与光能量衰减的程度成正相关,被测薄膜越厚,红外光的能量衰减越厉害,被薄膜反射回来的能量就越少,通过检测反射信号强度,在根据反射信号强度与薄膜厚度之间的函数关系式来确定待测薄膜的厚度。系统包括红外光源、红外光传感器、信号处理部分,结构如图2所示。

2 红外反射式测厚原理


该测厚装置的结构设计简单,对薄膜无损,对加工精度及装置的安装要求较高,要保证红外光源和传感器的安装角度要合适,较容易受到噪声干扰,使反射光很难被传感器接收,削弱了传感器对有用信号的接收能力,为了提高信噪比,需要提高红外光源的发射功率和及传感器的灵敏度。一方面,生产线上的薄膜可能会有一定的震动,这会影响传感器接收信号的效果,另一方面红外光不可见,实验调试十分不便,这对相关的操作人员要求高。透视法现在已成为薄膜测厚的主流,红外透射式测厚法测薄膜的厚度原理与X射线测厚的原理基本相同,都是利用厚度与衰减程度之间的函数关系来测量厚度,由于穿透性较弱,红外透视法只适用于透明半透明塑料薄膜厚度的测量。相比较于红外反射式测厚法,透射法数据处理方便、机械结构相对简单,有利于提高测量的效率和精度;与射线测厚法相比它具有无辐射、安全等优点,我国的红外薄膜测厚仪主要是靠进口,目前美国的NDC公司生产的红外薄膜测厚仪在市场上占了很大份额。


1.4   涡流测厚

涡流测厚法主要运用在涂层测厚上,测量导电物体表面非导电涂层的厚度。涡流测量的原理是交流信号加在测量探头的线圈上并产生电磁场,导体在测量探头靠近时会产生涡流,测量探头距离导体的距离越近,则涡流越大,反射阻抗也随之加大,反馈阻抗的大小表征了探头与导电基体之间距离的大小,即导电材料上非导电涂层厚度的大小,这个交流激励信号必须是高频的,应为在较高频率时电导率对电感分量的影响可忽略,电感分量主要受距离变化的影响。当涂层材料有一定的导电性时,通过校准也可测量,但要求基体和涂层两者的电导率至少相差35倍以上,涡流测厚仪能有效检测有色金属表面氧化膜、油漆、喷塑、橡胶等涂层的厚度,分辨率可达到0.1μm,误差在1%,量程达到10mm的水平。


涡流测厚仪的开发已具有几十年的历史,德国EKP公司在90年代中期推出的MINITEST4100/3100/2100/1100系列电脑精密涂层测厚仪,通过选择变更13种智能式测头对各自检测对象进行厚度测量,其涡流测头的最大测量厚度达100μm。该系列的4100型拥有全数统计、打印直方图和采用微处理技术实现由计算机控制的自动测量功能,被誉为万能型涂镀层测厚仪,代表了当今涡流涂层测厚仪的最高水平。在国内方面,时代集团公司在涡流涂层测厚仪的研制方面走在了前列,其生产的CTG-10系列涂层测厚仪的各项指标也达到了国际标准,广泛的应用在制造业、金属加工、化工业、商检等检测领域。


1.5   超声波测厚

超声波测厚是一种典型的接触式测厚,使用时超声波探头需通过耦合剂与被测物体接触,超声波测厚从原理上分有共振式、脉冲式两种。共振式测厚的原理是超声波探头向物体内发射入射波,当被测物体的厚度为半波长的整数倍时,入射波与反射波将会同相,在被测工件内产生驻波,引起共振,最后由共振频率可以得到相应的被测工件厚度,但是这种测厚法操作复杂,需要不断地改变超声波的频率来找到发生共振时的波长,此外用这种方法测量的误差也比较大。所以现在应用的最多的是脉冲反射式测厚,其原理如图3所示超声波探头发射一脉冲信号,声波信号通过被测物体,到达下表面并产生反射,利用传感器记录超声波往返于被测物体全程所用的时间,从而求得被测物体的厚度d

式中:d为被测样品的厚度,v为超声波在样品中传播的速度,t为超声波往返于样本所用的时间。

3 超声波反射式测厚原理


超声波测厚仪在对静止、常温的物体进行在线式接触测厚上应用得十分广泛,近年来国外也有研制出了耐高温耦合剂和高温超声波探头,使之能够胜任高温环境下的测量工作,如德国KK公司的高温超声波探头DA590就能在200℃的温度下工作。超声波测厚法精度高,有的测厚仪甚至能达到0.1mm的精度。超声波测厚法具有检测设备简单、对人体无害、操作简单、使用方便、成本低的特点,可以实现对各种设备和工件的测厚与监测的功能,在工业生产领域中对各种材料或零件的厚度作精确测量,它广泛应用于特种设备(锅炉、压力容器、压力管道、起重机械、大型游乐设施等)物流仓储、船舶、化工设备、桥梁等行业的各种板材、管材、半成品、零部件壁厚测定。亦可定期对输油管道进行厚度检查;另外一个重要的方面是可以通过对管道和压力容器厚度的检测来监控他们在使用过程中受腐蚀后的减薄程度,评估其局部腐蚀、锈蚀的情况,防止爆管等安全事故的发生;总之,脉冲反射式超声测厚仪具有良好的应用前景。


2     测厚系统的工作过程

每个测厚系统所用的测厚方法与相应的传感器不尽一样,但各个测厚系统的构造基本相同,其构造如图4所示,均包含以下几个模块:信号发送、信号采集、信号处理与转换、以单片机或PLC为核心的控制系统、结果显示等。

4 测厚系统的组成


系统的工作流程如下,信号发送模块在单片机或PLC等控制器的作用发射检测信号,再由相关的传感器进行信号采集、放大,经由信号处理与转换模块将传感器接收到的模拟信号转换成数字信号,最后由PLC或单片机进行运算,并将结果显示出来。


3     测厚仪器的比较

总的说来上述几种测厚仪的应用范围不一样,在不同的领域不同的测厚仪都有其各自的优点。红外测厚仪在测量薄膜厚度方面具有很大优势,但是它的测厚范围有局限性,它要求被测对象是透明或者半透明的薄膜,很难对不透明的材料进行测厚,且市面上的红外测厚装置价格昂贵。射线测厚仪测量精度高,主要应用于被测物体厚度较小、生产线自动化程度(人员少)比较高的场合,缺点是由于辐射的存在容易对环境造成污染,对人的健康产生威胁;由于需要额外的防护结构,导致射线测厚仪笨重,另外射线测厚仪的维护费用较贵。激光测厚仪的测量范围较大,能对高温材料进行厚度的测量,在热轧钢生产线上激光测厚仪甚至代替了射线测厚仪,缺点是测量精度不高,激光器的使用寿命不长。涡流测厚仪主要用在测量涂层方面,尤其是测量金属表面非金属涂层的厚度,能有效测量有色金属表面氧化膜、油漆、喷塑等的厚度,缺点是不够稳定,容易受到外部环境的干扰。超声波测厚仪属于接触式测量,只能测量静态物体的厚度,超声波测厚仪结构简单,使用方便、维护成本较低,由于声波在不同温度和介质中的传播速度不同,在使用过程中要注意对声速的修正,其缺点是在使用过程中探头容易磨损。


4     结束语

随着现代工业生产自动化的步伐不断加快,在工业生产中对产品厚度的测量也提出了更高的要求,在线测厚在生产中得到了广泛的应用,并逐渐显示出了实时、全自动及可靠性等方面的优势,具有广阔的市场前景。从目前国内测厚仪器的发展现状与应用环境来看,提高测厚仪的智能程度、抗干扰性能、自动化程度、分辨率和测量精度将会成为测厚仪器下一步的发展方向,而这些都离不开传感器技术的发展。将来对某种产品的测厚也不会限于一种测厚方法,而是多种测厚方法配合使用,以发挥各种测厚仪器的特长,进而提高测量结果的可靠性。


论文标题:Research and Application of Some ThicknessGauges




END.jpg文首.png


联系电话:13902964721                             联系邮箱:service@tronsight.com                                联系地址:江苏省苏州市吴中区珠江路888号