中华自主品牌丨精密测量专家
专注于高精度位移传感器的研发生产

全国咨询热线:
13902964721

创视智能

【行业应用】激光三角-柱状结构内尺寸的激光光学检测

发表时间:2021-11-12 11:33

提要:介绍了工程中用激光光学方法检测柱状结构内尺寸参数的新进展。对各种方法的适用场合和精度作了分析比较。并提出了一种检测高精度航空航天器MJ内螺纹的新型激光光纤传感器的设计思想及检测原理。


关键词:内尺寸,激光,光学检测,光纤传感器


对柱状内尺寸的检测(如管道、盲孔、内螺纹等),由于内部空间的限制,需要对测量头的结构大小提出严格的要求,还需要系统有较高的对中定位精度。尤其是对微小内尺寸的检测,实现起来就更为困难。接触法有诸多缺点,例如检测效率低,满足不了在线检测的要求;测量力会引起工件的变形、划伤;另外,测头易受电磁干扰且不抗化学腐蚀;零件上的灰尘和污物还会附着在测头上给测量带入误差。而随着工业特别是航空航天工业的发展,对产品质量的要求不断提高,要求有柔性大、速度快、精度高、可靠性强的自动化检测系统对产品质量进行在线实时监控检测。激光器、CCD摄像器、光纤等光学技术及超精密加工技术的发展,给上述检测要求的实现提供了可能。本文介绍以半导体激光器为光源的几种最新光学法检测柱状内尺寸的原理及应用分析,并提出一种用激光光纤传感系统检测航空航天MJ内螺纹尺寸参数的设计思想。


内尺寸检测方法的对比分析

1.    LD-PSD

这种方法的测量原理如图1所示。其测量范围在9.511.0mm之间,测量值的标准偏差约为3μm。测量时对被测面的光洁度要求不高,可实现对较粗糙内表面的检测。


1   LD-PSD法测内尺寸原理与结构图


测量时,由激光器(LD)发出的准直光束聚焦于被测内表面上。经被测面反射的发散光被平短模凸透镜会聚,再由平面反射镜将光反射至一维位置检测器(PSD)上。如果测量之前,标定好PSD,则工件的内尺寸就可以通过光点在PSD上的位置来确定。如果测量光面没在柱状表面的径向上,可以通过沿垂直纸面方向移动测头,直至找到测量的最大值为止。


改善这种方法检测精度的途径,可从以下几方面考虑:

1)    PSD测距之前的标定,是决定系统分辨率和测量精度前提。由于存在空程(滞后移动)的问题,而影响标定的测量结果。为了提高标定精度,可选用具有较高定位精度的测量仪进行标定。

2)    由于会聚透镜存在球面像差,而破坏了PSD的线性特性。在透镜出光面考虑使用非球面的形状,以减小球面像差的影响。

3)    还可以从提高PSD的分辨率和信号处理电路的精度和提高两路激光光束的对准精度考虑改善系统的检测精度。


2.    LD   CCD

这种方法使用半导体激光作为光源,对内尺寸范围在80140mm之间的工件进行非接触检测。测量分辨率为100μm[2]。其测量原理如图2所示。测量传感器包括半导体激光光源1,环形光发生器2CCD摄像器5。环形光发生器将LD出射的光束形成圆环并投射到被测表面3,由内表面反射和散射的光通过接收透镜4,CCD的敏感平面内聚焦。传感器装在由步进电机驱动的导轨上,以使传感器能在测量轴线上进行移动。


2   光学法测量内尺寸示意图


设激光束由A点投射到被测面M点上。R是传感器中心线到点M的距离。通过焦距为f的接收透镜对散射光的聚集作用,MCCD上成像于N点。rCCD上与R有关的环状图象的半径,m是光线出射点A到接收透镜中心O之间的距离。被测尺寸RCCD敏感面上的圆形图象半径r之间的关系为

这种方法已经成功地用于实际检测中,但其测量的分辨率不高,而且只能用于检测表面形貌变化比较平缓的场合。

以上两种光学测量内尺寸的方法,具有非接触检测的优点;其局限在于光学零件的调节较烦琐,测头的尺寸相对较大,从而使测量范围受到了限制。


3.    LED       FOS

FMS(柔性制造系统)内尺寸光纤检测仪传感器工作原理如图3所示。测量前,先要对内孔进行定位,然后将测头移至测量位置,用光纤传感头分别对工件进行两次定位测量,同时根据与测头共同运动的双频激光干涉仪的测量反射镜来确定两个位置的读数值,两者之差与两定位间隙及测头结构尺寸之和即为被测孔径值。被测距离与输出光强的关系要在测量前进行标定。


3   弯曲式光纤传感头结构图


测头的直径为5mm,光纤选用数值孔径NA=0.37的多模Y型光纤,光源为中心波长0.88μm的发光二极管(LED),光电接收元件为PIN光电二极管。用这种办法测量分辨率可达0.1μm,孔径定位测量精度为±1μm,对孔径等内尺寸的测量范围大于6mm


光纤传感器测头部分有四根光纤两两相隔90°排列,其中两根用于定位,另两根用于测量。其结构如图4所示。


4测头布局


5测量原理图


测量时用测头C2C4分别对内孔表面进行定位,然后将工件移至测量位置,C1C3测量。图5为测量原理,光纤测头在两个位置上分别进行定位,由与测头一起运动的双频激光干涉仪的测量反射镜读出两个位置的读数X1X2,两者之差Δx=x1-x2,再由下式求得孔径值:

D=Δx+    b+e1+e2   (2)

其中,e1e2分别是光纤头两次定位的间隙,b是结构参数,可通过标定得知。


这种对内尺寸测量的方法不仅提高了测量精度和分辨率,而且对测量范围有了明显地改善。由于LED的光谱范围较大,光强的径向分布不集中,使其与光纤的耦合效率不高。为了进一步提高测量分辨率,可考虑改用半导体激光器(LD)作光源。


MJ内螺纹检测方法的研究

MJ内螺纹是在普通螺纹牙型的基础上发展起来的一种用于航天航空产品中的高精度、高强度、适合于疲劳极限和可靠性要求较高的场合下使用的连接件。由于对MJ内螺纹产品质量精度要求较高,所以对其参数要进行量化测量。由于螺纹件具有特殊的内表面形状,对其测量至少首先要满足以下两个要求:

能实现对微小表面(例如内螺纹的大径)的扫描检测。

②能实现对不同的距离(例如大、小径)都具有较高的测量灵敏度。

以往对内表面检测的光学方法测量范围的局限性满足不了多尺寸规格螺纹的检测要求,由于光纤测距只在很小的范围具有较高的灵敏度,加上多模Y型光纤的数值孔径较大,在被测表面形成的光斑尺寸较大,从而使多模光纤的横向分辨率较低,满足不了对微小表面的扫描测量。


本文提出一种用半导体激光器作光源,采用单模光纤照明,多模光纤接收测量信号的光纤束传感头的设计。其结构原理如图6所示。这里采用单模光纤作为发射光纤,因为单模光纤具有较小的数值孔径,通常,光纤的出光角与受光角相同。这样,单模光纤照射到被测面上时,易获得较小的光点尺寸。例如,设待检测的螺纹为MJ10×1.25,则其大径的削平宽度为P/8=156.25μm,单模光纤的数值孔径NA=0.1,纤芯半径r=2.5μm,为了使系统能分辨出156.25μm的尺寸,光点直径α<156.25μm。由于螺纹本身的牙型高度h≈609μm,测量时取测距d=700μm。则有光点直径a=2d·tg(arcsinNA)+2r≈145μm。可见,上述的参数设计能够满足对微小表面的扫描测量。


6   检测MJ内螺纹的光纤传感头


7   被测距离d(μm)与光强关系


另外,对强度型光纤位移传感器来说,其灵敏度较高的区段很窄(一般不超过300μm),为了同时实现对内螺纹大小径的自动扫描测量,必须想办法扩大其灵敏区段。本文采用图6中给出的传感头结构,当测量小径时,取光纤束A中所接收的信号;而测大径时,取光纤束B中接收的信号,从而达到扩大量程的目的。两束接收光纤的位移光强关系曲线如图7所示。


从以上分析可看出,这种光纤传感器结构能很好地实现对MJ内螺纹特性内表面的检测问题。



论文题目:柱状结构内尺寸的激光光学检测

作者:陆述田,赵勇(潍坊高等工业专科学校,哈尔滨工业大学)

END.jpg文首-无水印.jpg


创视智能传感丨中华自主品牌-精密测量专家

首页                     产品中心                    解决方案                     服务支持                    加盟合作                   新闻资讯                    关于我们
联系电话:13902964721                             联系邮箱:service@tronsight.com                                联系地址:江苏省苏州市吴中区珠江路888号

关注我们
— 咨询我们 —
您填写的信息将被严格保存
姓名
*
单位名称
*
电话
*
备注
*
立即提交
13902964721
咨询电话